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Abstract

A general problem when analysing NMR spectra that reflect variations in the environment of target molecules is that different
resonances are affected to various extents. Often a few resonances that display the largest frequency changes are selected as probes to
reflect the examined variation, especially in the case, where the NMR spectra contain numerous resonances. Such a selection is
dependent on more or less intuitive judgements and relying on the observed spectral variation being primarily caused by changes
in the NMR sample. Second, recording changes observed for a few (albeit significant) resonances is inevitably accompanied by
not using all available information in the analysis. Likewise, the commonly used chemical shift mapping (CSM) [Biochemistry
39 (2000) 26, Biochemistry 39 (2000) 12595] constitutes a loss of information since the total variation in the data is not retained
in the projection into this single variable. Here, we describe a method for subjecting 2D NMR time-domain data to multivariate
analysis and illustrate it with an analysis of multiple NMR experiments recorded at various folding conditions for the protein MerP.
The calculated principal components provide an unbiased model of variations in the NMR spectra and they can consequently be
processed as NMR data, and all the changes as reflected in the principal components are thereby made available for visual inspec-
tion in one single NMR spectrum. This approach is much less laborious than consideration of large numbers of individual spectra,
and it greatly increases the interpretative power of the analysis.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

An NMR resonance is sensitive to the surrounding
environment of the nucleus to which it owes its origin.
The NMR spectrum has therefore a potential to reflect
intermolecular interactions since such interactions may
induce spectral changes, either by inducing conforma-
tional changes in the molecule investigated or by creat-
ing direct contacts with the interacting molecule. In
both cases the surroundings of the nucleus monitored
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is perturbed and the induced spectral changes can be
used to monitor the molecular interactions. However,
the spectral changes involved may often be difficult to
interpret since the target molecule is often sizeable and
accordingly generates complex NMR spectra. In addi-
tion, induced spectral changes are not easily identified
and quantified since numerous resonances are affected
by the molecular interactions and the changes are spread
out over several different spectra.

The objective for applying multivariate data analysis
(MVA) is twofold, firstly to be able to quantify how sim-
ilar the different spectra are to one another and by that
obtain a statistical representation of the spectral changes
occurring. Second, to enable the representation of this
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variation in one single NMR spectrum obtained by the
Fourier transform of the calculated principal compo-
nents, which represents an image of changes occurring
in several NMR spectra. The best approach to accom-
plish this would be to subject NMR experiments to mul-
tivariate data analysis using Principal Component
Analysis (PCA)1 [3,4] and partial least squares (PLS)
[5] regression.

It has previously been shown thatmultivariate analysis
can be applied to one-dimensional NMR free induction
decays (FID) and that the principal components thereby
obtained can be Fourier transformed to provide inter-
pretable NMR spectra [6]. As expected, the results were
found to be identical to those obtained from frequency
domain NMR spectra. However, detailed interpretation
of the features in such a 1D spectrum will be hampered
by the restricted resolution, especially when analysing lar-
ger molecules. This suggests, therefore, that one should
extend the multivariate analysis to 2 or 3D NMR to ex-
ploit the greater resolution of higher dimensional
NMR. Another advantage of using 2D NMR is that the
second frequency domain generally contains additional
information, which improves the calculated models.
2. Methods

2.1. NMR

The NMR experiments were collected on an NMR
sample that initially had a protein concentration
0.9 mM, a GuHCl concentration 0.35 M and a pH 6.5
(50 mM phosphate buffer). The increase in GuHCl con-
centration was obtained by adding small aliquots of
5.8 M GuHCl solution at pH 6.5 (50 mM phosphate
buffer) to provide samples of the following denaturant
concentrations: 0.35, 0.70, 1.05, 1.35, 1.55, 1.70, 1.90,
2.05, 2.35, 2.70, and 2.90 M GuHCl. The NMR data
were collected as 1H–15N ge-HSQC spectra [7] consisting
of 1024 * 200 complex data points. Processing of the
NMR data was conducted by using the NMR software
package SwaN-MR [8].

2.2. Data pre-processing

The binary NMR data was transformed to ASCII
format and thereafter each NMR 2D NMR experiment
was converted to a row vector and normalized to length
one. The row vectors for all NMR spectra was arranged
into a matrix with 11 rows and 204,800 columns. The
data were normalized by removing the mean from each
column (time point).
1 Abbreviations used: PLS, partial least squares, PCA, principal
component analysis.
2.3. PCA and PLS

The PCA and PLS models where calculated and
visualised using MATLAB (www.mathworks.com).
PCA decomposes the X matrix, the collection of FID�s,
into score, T, and loading vectors, P � X ¼ t1 � pT1 þ t2�
pT2 þ t3 � pT3 þ � � � þ tA � pTA þ E, where E are the residuals
and A is the number of principal components. The first
principal component is derived so it describes maximum
variance in the X-matrix and is then removed from the
X-matrix, X ¼ X � t1 � pT1 . A second principal compo-
nent can then be calculated from the deflated X matrix,
and that component will be orthogonal to the first. This
is repeated until all systematic variation is described.
The scores are related to the observations, here denatur-
ant concentration and will show similarities among they
observations. The loadings, P, describe how and what
variables, here time-points in the FID, that are respon-
sible for the separation seen in the scores.

In PLS there is both aX-matrix and aY-matrix;Y is in
this case a vector with the concentration of the denatur-
ant. In PLS, the X matrix is also decomposed into a set
of orthogonal components, the difference is that instead
of describing the maximum variance in X (PCA) they
now describe the maximum covariance between X and
Y (PLS). X ¼ t1 � pT1 þ t2 � pT2 þ t3 � pT3 þ � � � þ tA � pTA
þE and Y ¼ t1 � cT1 þ t2 � cT2 þ t3 � cT3 þ � � � þ tA � cTA þ F .
The scores,T, relate bothX andY to each other. For each
component in PLS,Y is described as a linear combination
of all the X variables. The weight for each component, w,
describes how important a certain variable is for describ-
ing the response.

For the PLS models the (GuHCl) concentration for
each NMR spectrum was used as the response (inverse
regression). Inverse regression uses less assumption
about the X-matrix than direct regression, where the
spectra would have been the response. For a more gen-
eral discussion about this, see Wold and Josefson [9].
Only the first weight vector, w1, was used for the inter-
pretation of the PLS model since this is the best estimate
of how important a certain column is for describing the
response [10]. The w1 vector was Fourier transformed as
an ordinary NMR time-domain signal to obtain the fre-
quency 2D NMR spectrum, representing the weight
vector.
3. Results

The multivariate analysis of 2D NMR data was ap-
plied to the oxidised form of the mercury binding pro-
tein MerP at different folding conditions. The
equilibrium folding properties have already been charac-
terised by CD and fluorescence methods [11] and the
assignment [12] and structure [13] of MerP have previ-
ously been determined (Fig. 1). The data used in the
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Fig. 1. The solution structure of the oxidized form of MerP presented
as a two-dimensional cartoon (A) and as ribbon structure (B). The
secondary structure elements are indicated in both representations.
Selected amino acids are labelled as follows: circles—amino acids that
change their proton chemical shifts up-field in the range 0.35–1.35 M
GuHCl. Squares–amino acids that experience 15N frequency shifts in
the range 0.35–1.35 M GuHCl. Triangles—amino acids that are still
observable at their native state frequencies in the range 2.05–2.90 M
GuHCl.
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analysis consisted of 11 1H–15N ge-HSQC experiments
[7], recorded at varying denaturant (GuHCl) concentra-
tions. By stepwise increasing the denaturant concentra-
tion from 0.35 to 2.90 M, the transition from
predominantly native to unfolded protein was induced.
Interestingly, the native state and the unfolded ensemble
of the protein coexist at all denaturant concentrations,
due to the relatively low stability of the protein. Conse-
quently, the addition of GuHCl induces spectral changes
within the native state and the unfolded ensemble, as
well as contributes to the global unfolding of native
MerP molecules. The local unfolding processes in the
native protein are within the fast exchange region of
the NMR time scale, i.e., average NMR resonances
are observed, whereas the major unfolding process is
slow on the NMR time-scale and thus native and un-
folded protein display separate resonances.

PCA calculations were performed on the original 2D
NMR time-domain data. An inspection of the first three
principal components revealed some discontinuity be-
tween the spectra obtained in the various NMR experi-
ments. This occurs since the NMR signals obtained in
different experiments are also affected by variations that
are unrelated to the folding/unfolding of the protein,
e.g., phase variation between the NMR transmitter/re-
ceiver. The unwanted phase variations were eliminated
by rotating the data points in the NMR FIDs so that
the 1st complex point coincided with the x axis, which
guaranteed that the 0th order phase correction needed
of the individual NMR spectra was identical. Using
the same acquisition parameters in all NMR experi-
ments ascertained that the needed 1st order phase cor-
rection did not vary between the experiments.

The first three principal components of the PCA anal-
ysis, after the data had been corrected for the phase and
intensity variations, are shown in Fig. 2. The three-di-
mensional plot of the first three PCAs, explaining
59.2% (26.9, 19.7, and 12.6%, respectively) of the vari-
ance, provides an informative overview of the variation
in the NMR data and shows how the different recorded
2D NMR spectra are related to one another. In this
case, the addition of denaturant provides continuous
changes between the different NMR experiments. Fur-
thermore, the PCA model reveals that there are at least
three main changes occurring, i.e., the addition of dena-
turant also induces spectral changes which do not corre-
spond to the main two-stage unfolding process of the
protein [11]. A Fourier transform of the loadings, i.e.,
how the various FIDs contribute to the principal com-
ponents, would provide NMR spectra, enabling a visual
inspection of all spectral changes caused by the addition
of denaturant. However, these spectra would constitute
a superposition of various effects, as revealed by the dif-
ferent directions of the changes in the score plot (Fig. 2).
Consequently, a more interpretable representation of
the induced spectral changes would be obtained by
focussing on the GuHCl concentration ranges, where
the PCAs vary in the same direction in the score plot.
Therefore, three sub-models, covering the following
denaturant concentrations ranges; 0.35–1.35 M, 1.55–
2.05 M, and 2.05–2.90 M GuHCl; were subjected to a
PLS analysis.

The denaturant concentration was used as the Y ma-
trix, i.e., the response, to detect spectral changes related
to the denaturant concentration. The Fourier transfor-
mation of the first PLS weight vector, w1, provided an
NMR spectrum for each PLS model (Figs. 3A–C).
These models explain 99% of the variation in the re-
sponse, which is not surprising since there are so few
samples (four) and so many variables. The correspond-



Fig. 2. The first three principal components representing 59.2% of the total variation in the spectra obtained in 11 2D NMR experiments are
displayed. Each point in the plot is labelled with the GuHCl concentration used in the respective NMR experiment. 1H–15N HSQC-spectra are shown
for the starting and ending points used in PLS-analysis.
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ing cross-validated values for the models are: 74, 78, and
82%, respectively. This indicates that the models are true
since they are able to predict samples that have been left
out in the cross-validation scheme. Another important
factor for validating the models is the fact that the Fou-
rier transformed PLS weight vector actually resembles
an NMR spectrum, which would not be the result in
the case of a random model.

The PLS-derived 2D NMR spectra, hereafter referred
to as PLS-spectra, reflect the changes occurring between
the various recorded NMR experiments due to confor-
mational changes induced by the denaturant, i.e., reso-
nances that are invariant to the addition of denaturant
do not show up. The visible resonances appear either
as positive (blue), which intensities are positively corre-
lated to the GuHCl concentration, and vice versa for the
negative (red) resonances. Hence, such a PLS-spectrum
offers a comprehensive overview of how the various res-
onances are affected by conformational changes that are
correlated with the denaturant concentration. More-
over, only one PLS-spectrum needs to be analysed
(i.e., integrated and evaluated for frequency changes
etc.), rather than a whole range of individual 2D
NMR spectra, as in a more traditional analysis, where
the desired information would be quite tedious and dif-
ficult to extract. An alternative to our approach would
be to use an ordinary difference spectrum between the
starting and ending point of each identified denaturant
concentration range. However, our approach with the
PLS spectrum is superior in at least two aspects. First,
all spectral changes that are not related to the denatur-
ant concentration are filtered out. Second, since a PLS
spectrum is calculated from all NMR experiments with-
in a denaturant concentration range it is possible to dis-
tinguish between fast and slow NMR exchange
processes (vide infra).

Comparing the three different PLS-spectra (Figs. 3A–
C), the changes in the spectra for the pre-transition
region (0.35–1.35 M GuHCl) and the post-transition re-
gion (2.05–2.90 M) are predominantly represented by
frequency shifts (Figs. 3A and C) within the native
and unfolded form, respectively. This is manifested by
peaks having both negative and positive contributions.
Such behaviour is expected for nuclei that are involved
in conformational exchanges that are rapid on the
NMR time-scale. The rapid exchange indicates that
the populated conformations are easily accessible, and
thus do not represent the major unfolding process.
Therefore, the structural changes in these regions are
mostly of local nature. Presumably, the bulk of these



Fig. 3. 2D 1H–15N NMR spectra obtained by Fourier transformation of the first PLS weight vector for the three concentration ranges chosen.
Positive peaks are coloured blue and negative peaks are coloured red. The peak volumes is a measure to what extent the GuHCl concentration affect
the changes observed in the NMR spectra (A) 0.35–1.35 M GuHCl: resonances experiencing up-field proton chemical shifts upon addition of
denaturant are indicated by circles, while those reflecting noticeable changes in 15N frequencies are indicated by squares. (B) 1.55–2.05 M GuHCl:
amino acids that display a substantial loss (integrals smaller than 50% of the most intense peaks) of their amide resonances in the native state are
labelled (C) 2.05–2.90 M GuHCl: resonances still present at their native resonance frequencies are labelled with the secondary structure element,
where they are located.
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spectral changes are due to the already known affects of
GuHCl on the resonance frequencies of unstructured
peptides [14]. However, there are also a number of peaks
that are either purely negative or positive in these spec-
tra, suggesting that the resonances reflect processes that
are involved in slow exchange on the NMR time-scale,
due to a significant energy barrier between the confor-
mational changes involved. These peaks represent in-
ter-conversions between native and unfolded states of
the protein and they are observable since a fraction of
the unfolded state is present in the pre-transition PLS-
spectrum and vice versa for the post-transition PLS-
spectrum.

This slow exchange is the main feature of the PLS-
spectrum based on the 1.6–2.1 M GuHCl region (Fig.
3B), in which there are large numbers of negative peaks
representing the native state, while unfolded states of
MerP appear as less well resolved positive peaks, mainly
found in the centre of the spectrum. Hence, this range
corresponds to the main transition from the native to
the unfolded protein.

Closer inspections of the separate PLS-spectra reveal
that, in addition to the general effect of changing the
proton chemical shifts downfield by increasing GuHCl
concentration, there are deviations from this behaviour.
The PLS-spectrum for the pre-transition region, 0.35–
1.35 M GuHCl (Fig. 3A), reveals that the proton chem-
ical shifts of Phe-38 and Glu-39 decrease upon addition
of denaturant since the positive contribution is located
to the right of the negative part. Consequently, these
two residues that are located in a loop connecting b-
strand 2 and 3 (Fig. 1) adopt a non-native conformation
prior to the main denaturation of the protein. The pres-
ence of such local conformational variations in this loop
is not surprising since it has previously been reported
that this region has different conformations in the oxi-
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dized and reduced form of MerP [13,15], which implies
that this loop can adopt different conformations of sim-
ilar energy. There are also some resonances that display
significant changes in their 15N frequencies (indicated by
squares in Figs. 1 and 3A). Interestingly, those amino
acids for which the 15N frequency most significantly de-
creases following addition of denaturant are located in
b-strands 2 and 4 and hydrogen bonded to b-strands 3
and 1, respectively. However, most of the amino acids
that show the opposite frequency shift are located in
loops or at the edge of the b-sheet and not involved in
hydrogen bonds. Hence, these 15N frequency changes
suggest that there are native-like conformations where
the pattern of the hydrogen bonds between b-strands 1
and 4 and 2 and 3 have changed as compared to the na-
tive state of the protein. Interestingly, such frequency
changes are not observed for the amide protons connect-
ing b-strands 1 and 3, which appears to be part of the
most stable region of the protein as shown by hydrogen
exchange experiments [16].

The PLS-spectrum of the main transition (Fig. 3B)
shows that all resonances of the native spectrum de-
crease in intensity during the transition. However, this
reduction is substantially lower for eight amino acids
(marked with names in Fig. 3B). Interestingly, six of
these are found in loop regions located in close proxim-
ity to the disulfide bond. The remaining two are also lo-
cated close to this region of the protein, while situated in
the N-terminal part of the first a-helix. The reduction of
the integral for these resonances in the PLS-spectrum
indicate that this structural region of the protein has
to a certain extent already adopted a non-native confor-
mation during the pre-transition range. Further support
for this assumption comes from the observation that
these amino acids, along with Ala-16, are absent in the
PLS-spectrum of the post-transition region (Fig. 3C).

In contrast, several amino acids can still be observed
in the PLS-spectrum of the post-transition region (visu-
alised in Fig. 1). A majority of these are located in the
secondary structure (Fig. 3C). This indicates that these
secondary structures are not completely ruptured even
at the higher denaturant concentrations.
4. Conclusions

It has been shown that multivariate data analysis can
be successfully applied to 2D NMR time-domain data.
The PCA analysis showed how the NMR data varied
as the denaturant was added to MerP and the score plot
revealed the presence of three main principal spectral
changes. Fourier transformations of the local PLS mod-
els provided NMR spectra in which merely the changes
related to the addition of denaturant are present, there-
by enabling substructures involved in local unfolding
events to be identified. This information would hardly
have been recognised without the availability of these
PLS-spectra, which are far better suited for human
interpretation than the analysis of peak picking tables
extracted from the 11 recorded NMR spectra.

The methodology utilised in this work should be
applicable to the analysis of any multidimensional
NMR spectrum, where the objective is to obtain infor-
mation about systematic variations in the data.
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